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1. Introduction

The numerical modelling in many physics areas (for example: fluid flows in complex reservoir models, Lagrangian hydro-
dynamics with heat and radiative diffusion, Lagrangian magnetohydrodynamics with magnetic diffusion...) requires robust
and flexible methods for approximating diffusion operators with variable full tensor coefficients on arbitrary (distorted, non-
matching, non-convex...) unstructured n-sided (resp. n-faced) polygon (resp. polyhedron) meshes. For dealing with this
problem, we proposed in [1,2] a new finite volume method, the principle of which is to integrate the equations both over
a (given) primal mesh and an associated dual (or covolume) mesh that is made up from the primal mesh, the degrees of free-
dom being the values of the unknown function both at the mass centers and the vertices of the primal cells. In [3] this meth-
od has been generalized for handling discontinuous full tensor coefficients. Furthermore, in this same article, we proposed to
use the so-called indirect dual mesh instead of the initial so-called direct dual mesh described in [2] (for definitions of these
dual meshes see the next section). The indirect dual mesh lends itself better to the 3D framework and it provides a more
accurate approximation of the gradient of the solution. Since then this type of method has been called discrete duality finite
volume (DDFV) method in order to emphasize that it satisfies a discrete integration par parts (see [6]) and it proved to be
efficient for dealing with several problems arising in various areas of computational physics (see [4-22]). Convergence anal-
ysis have been carried out in [5,12,18], for the linear case, and in [11] for the broad class of non-linear Leray-Lions type dif-
fusion operators.
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To our knowledge two 3D generalizations have been devised (while correcting this article we have been informed of an
other type of 3D generalization: see [23]).

1. The first one, that leads generally to non-symmetric matrices, is proposed in [10]. This generalization is second-order
accurate in the L? norm and it boils down to the usual cell-centered and vertex-centered finite volume methods when
Delaunay-Voronoi meshes may be used. However the numerical experiments we have carried out since those displayed
in [10] show that it is not robust enough to handle certain types of highly distorted meshes or highly anisotropic diffusion
tensors.

2. The second one, that is more attractive because it provides symmetric positive definite matrices, is proposed in [8,19]. It
has been used for approximating the so-called bi-domain equations that models the fully coupled heart and torso problem
in electrocardiology.

Here we propose a third 3D generalization, inspired from the previous ones, that uses the indirect dual mesh instead of the
dual mesh described in [8] which recovers twice the domain to be dealt with. The difference between this generalization and
that proposed in [10] lies in the approximation of both the gradient operator and discontinuous tensor coefficients while the
difference with that proposed in [8] lies in both the definition of the dual mesh and the approximation of discontinuous ten-
sor coefficients. This third generalization provides symmetric positive definite matrices and is more robust than the first one.
Furthermore it exhibits a numerical second-order accuracy in the L% norm for the solution and a first-order accuracy in the L?
norm for the gradient of the solution (a nearly second-order accuracy in the L? norm for the gradient of the solution is even
observed for the regular hexahedron meshes and for some distorted hexahedron meshes that have been tested below). How-
ever it is limited to polyhedral cells whose faces have three or four sides and it is not monotone. Such a 3D generalization with
a theoretical study of the discrete duality property (which underlies the known convergence proofs of the 2D case) has been
developed in [24].

Regarding other well-known methods for approximating diffusion operators in the framework of general meshes, one can
quote the mixed hybrid finite element (MHFE), the multi-point-flux approximation (MPFA) or the mimetic finite difference
(MFD) methods: the reader is referred, for example, to the (non-exhaustive) bibliography mentioned in [10]. Extensive 2D
numerical comparisons between a lot of these methods have been carried out in [25] (see also the articles which follow this
paper in the corresponding book). Other 2D numerical comparisons have been carried out in [26-29]. Recent works on 3D
diffusion schemes may be found in [30-37].

The organization of the paper is as follows. Section 2 is devoted to the definition of the different meshes that will be
used. The proposed finite volume method is set out in Section 3. Finally, several numerical experiments are presented in
Section 4.

2. Meshes: definitions and notation

Before devising the proposed finite volume method some preliminary geometrical definitions are collected in this section.

Given 2 a polyhedral domain, we will use a mesh on  (called primal or primary mesh) made up of n-faced polyhedra. In
what follows we define a “side” (“face”) as being the one (two)-dimensional boundary shared by two polyhedra or by one
polyhedron and the boundary of €. Note that such a side (face) may be not included in a straight line (plane). With each
(primal) element P, of this mesh we associate one (primal) point &,: the mass center is a qualified candidate but other points
could be chosen. By connecting these primal points, the barycenter & of every primal face Frand the middle & of every primal
side Sg we obtain a dual mesh on Q (called indirect, barycentric, median or Donald dual mesh: see Fig. 1). With each (dual)
element I1, of this mesh we can associate one (dual) point X4, namely the point which belongs to the primal cells P, whose
associated primal point &, is a vertex of I14. In all figures which follow the primal (resp. dual) points are denoted by the sym-
bol o (resp. e) while the points & and &, are denoted by the symbol [J. In addition of the indirect dual mesh, other available
definitions of the dual mesh could be used such as the two following ones.

Fig. 1. Full lines: four primal cells (two hexahedra and two pyramids) sharing the side S; = XX, two of them (P, and P,) sharing the face Fy= XXX Xq&f.
Dashed lines: an indirect dual face shared by the dual cells I1, and I1,.
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1. The first example is the so-called direct dual mesh obtained by connecting only the primal points &, and the barycenters &
of the boundary faces. However using such a dual mesh can be rather inconvenient because dual points may not belong to
their associated dual cell, especially for highly distorted meshes. So the direct dual mesh will not be tested in what
follows.

2. The second important example is the Voronoi mesh (see [38]). Assume that each primal polyhedron can be inscribed in a
ball that does not contain any other vertex than those of this polyhedron (viz the primal mesh is a Delaunay mesh, see [39]).
If all the ball centers are contained in Q2 they can be chosen to be the primal interior points although some of them may not
belong to their primal cell. By connecting these primal points and the centers of the boundary circumscribed circles, we
obtain the so-called Voronoi dual mesh whose sides (faces) are perpendicular to the primal faces (sides). For more preci-
sions regarding the numerical construction of such meshes see [40-44] and the bibliographies mentioned therein.

For the sake of clarity the definitions regarding the primal (resp. dual) mesh will be denoted by latin (resp. greek) letters.
Given G a geometrical variable (side, face, polyhedron), we will denote by |G| its measure (length, area or volume) and by 6G
its boundary.

Fig. 2. Full lines: two primal cells (an hexahedron and a pyramid) sharing the face Fy=XXyXX4&. Dotted lines: the intermediary (diamond) cell
Qr = &pXaXpXXa&q associated with the primal face Fy.

Fig. 3. A sample 2D primal mesh (full lines: four triangles and one pentagon) and its Voronoi dual mesh (dashed lines, top left), its direct dual mesh (dashed
lines, top right), its indirect dual mesh (dashed lines, bottom left) and its intermediary (diamond) mesh (dotted lines, bottom right).
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Besides the primal and dual meshes, we will need to define a third mesh: the so-called intermediary (or diamond) mesh.
Suppose that each primal cell P, is star-shaped with respect to its associated primal point &,. For every face F; € 6P, let be:

pr = U [X, gp]

xeFy

Suppose that Fyis an interior face such that Fy= P, N Py. By definition, the intermediary cell associated with Fyis Qr= Qg U Qg
If Fris a boundary face such that Fre oP, the intermediary cell associated with Fyis Q= Qg. By definition the set of interme-
diary cells is called the intermediary (or diamond) mesh of Q (see Fig. 2).

Some 2D meshes illustrating these definitions are displayed on Fig. 3: note that corresponding 3D meshes are quite too
complex to be drawn.

3. Discretization of the model elliptic equation

Given /= A(X) a positive function, k = x(X) a positive definite matrix, f=f(X), g = g(x) arbitrary functions and n the unit
outward normal regarding the polyhedral domain €, we will focus on the approximation of the following model elliptic
equation with a Robin (or Fourier) boundary condition:

{—V-(xVu):f in Q, )
kVu-n+/u=g onoQ.

The principle of the proposed method lies in the following operations (Fig. 1):

- integrate the first equation over each primal polyhedron P,

- integrate the second equation through each boundary primal face F;

- integrate the first equation multiplied by two over each dual polyhedron I,
- integrate the second equation through each boundary dual face oI1; N 0Q.

Thereby we obtain:

—Jp, V- Vu) = [, f,
JreVu-n+ fp du= [ g
=2 [, V- &Vu)=2 [, f.

jondmoxz kVu-n+ .fﬁndmmz = ‘fandmang :

The multiplication by two does not seem natural. However we will see that it is necessary for obtaining a symmetric positive
definite matrix: see [8] in which the author proposes to use a dual mesh that recovers twice the domain .

In the light of (2) we have to provide approximations of both the divergence and gradient operators: this is the goal of the
next two sections. The approximation of the other terms x, /, f, g are described in Section 3.3. The degrees of freedom of the
method will be the values of u at:

- the mass centers &, of the primal cells Pp,

- the barycenters & of the boundary primal faces F;
- the vertices X4 of the primal cells P,

3.1. Divergence approximation

Let v be a vector function. Suppose that v and vy are constant approximations of v in the intermediary sub-cells
Qs = Qs N Py, Qg = Qs N Py. This section is aimed at providing an approximation of V - v that depends on the v, vy, in both
the primal and dual cells.

Let n (v) be the unit outward normal vector regarding a primal (dual) cell. The divergence of v in the primal (dual) cell
Py(114) is approximated by:

1 1
Vv :—/V-v:— v-n,
P P, p OP.
VY =151 ), Pyl Jon,
1

Vv~ M
VVa=1m |, ] Jon,

V-

Let us denote (see Fig. 4):

Ff = 8Pp N Qf = 8Pq n Qf, (I)fd =0llzN Qf = (Dfrp @] prqr ] dsfup @] @fqu,
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Fig. 4. Left: a quadrangular face Fr=X.X;XXq and its associated intermediary cell Q;= Qg U Qg With Qg = £pXXpXXaér et Qg = EqXaXpXX&y (full lines). Right:
dual sub-cell ITq N Qp= &pXaérés Euéq and its normals Vep, Vigr Vups Vigu-

where @, Ppyr, Py, Prgu are the triangular dual faces:
(pfrp = éfCGCy ®fqr = 6f§q§r» (pfup = Cféufpv (pfqu = éf:qgu'

One remarks that:

/ von= ) /v-n, / vov= Y / v-v+/ v-n
OPp Freap, 7 Fr Jolly dyeolly ¥ P oM4noR

Let us denote:

nf:/ n,

Fy

Vfip :/
Py

and (for x4 € 0Q):

n; = / n.
AI14ndQ

We obtain the following approximations of V- v in P, and Il

Vs Vfgr :/
P,

far

v, Vfup:/
[
i

v, Viu = / v,
P fup Phqu

(V-V)y =@ 2 Vpony, &€ Q)
FpeoPp
(V-v)g = \1;7 > (Vi (v — vup) + Vig - (Vigr — Viqu)) (X4 ¢ 09), 3)
Pryeolly
VVia=mg 2 (Vio~ O = Vi) + Vig (ar = Vi) + g Va - Pa (X4 € 0Q).
de( d

For these approximations to be conservative, we have to set, for every interior intermediary cell Qs= Qg U Qg:
Vip - Ty = Vpg - Dy

(for example one can choose vy, = vy, = vy, where vris a piecewise constant approximation of v in Qy).
3.2. Gradient approximation

Given a scalar function u, let up, uy, ug be the values of u at the points &, &, X4. The goal of this section is to provide approx-
imations of Vu that depends on the up, uy, ug.

3.2.1. Gradient approximation in the intermediary cells
Given a triangle X.XpX., denote:

%(xb —Xq) X (Xc — Xq)-

Suppose that u is linear in a tetrahedron T, We obtain the following value of Vu in Tgpeq:
1

1
vu __ / Vu=—— un,
( )ade ‘Tﬂde ‘ Tabcd |Tabcd | aTabcd ’

Ngpe =
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Fig. 6. Left: intermediary sub-cell Qg = &X.XpXXq&r (full lines), primal face Fr=XXpXXq, dual sub-face ®p, = &£, (dashed lines) and normals nf and vy,
Right: intermediary sub-cells Qg = X XpXXa&y (full lines), primal face Fy= XXyXX4, dual sub-face @, = &£, (dashed line) and normals ny and vy,

that is (see Fig. 5):

(VU)gpeq = 3 Toped] ((ttq + te + Up)Mgep + (Ua + Up + Ug)Mabg + (Ug + Ug + Uc)Mgge + (Up + Ue + Ug)Npeq).
ance

By favouring the point X, we obtain (because Ny + Ngge + Ngpg + Mpeg = 0):

1 1
(Viaped = 3 Tonc] ((tg — Up)Ngge + (Ug — Ue)Ngpg + (Ulg — Ug)Mgep). (4)

For example, suppose that Fris a quadrangular (but not necessary planar) face. Using formula (4) provides an approximation
of Vu in the eight tetrahedra Tydas, Tpabp Tpbep Tpedss Tgadp Tabas Tachss Tqaer (€€ Fig. 6). The approximation (Vu),, and (Vu)g, of Vu
in the intermediary sub-cells Qg = Tpaar U Tpanr U Tpber U Tpear and Qg = Tyadr U Tgpar U Tgebs U Tqaer IS given by:

_ T pdaf| (V) paar + [ Tpav |(VU) paps + [ Tpber (V) piep + [ Tpear| (V1) pegy
Tpdar| + [Tpavr| + [Tpver| + [Tpear|

(Vit)g, (5)

and:

(Vu), = T qadf | (V1) gaar + Tavar| (V1) giar + | Tactr | (V1) ety + [Tqaer | (V1) gacr
fa ITqaar| + [Tabar| + [Tt | + [Tqacr .

Let us denote:

ny :/ n, vg= / vV, Vigs = / V.
F J Ppsp J Ppgs
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Replacing formula of type (4) in (5) and (6) provides:

(Vu)g, = %QL ((uf —up)ny +2 3 (up ua)"fm)v

Ss ede

’_

(Vu), = 1

L

a ((Uq —upny+2 50 (up — ua)"fq3>~

SocoFy

An approximation of Vu in the whole intermediary cell Qs is given by:

(Vu)f = |pr|(vu>fp i ‘QﬂJKVU) L. (( p)0y + 2 Z st) (8)

1Qp| + Qg ] |Qf\ sick;y
with Vi = Vip + Vigs.
3.2.2. Gradient approximation in the primal and dual cells

If needed, an approximation of Vu in the primal and dual cells can be given from the gradient approximation in the inter-
mediary cells by setting:

(V) = 5= D 1Qpl(Vuy,
‘ P| FreoPp
and:
(Vg = > (a0 Qpl(Vay, + a1 Qpl (V) ).

| 4| el

3.2.3. Remarks about the consistency
To give some idea of the consistency of the gradient approximation (8), let us consider a primal mesh made up of right
parallelepipeds whose edge lengths are hy, hy, h, and denote e, =(1,0,0), e,=(0,1,0), e,=(0,0,1). In such a case we have:
1 1 1
|Qf‘ = §hxhyhz, ny = hxhyeh Vg = —Vfy = thhzey, Vi = =V = Zhyhzex

and the approximation (8) reads:

| —

e~ e, 9)

Let denote by hythe diameter of the intermediary cells Q. Given three arbitrary points X, y, z € Qy Taylor expansions provide:

(Vu) =

(up — ug)(hye, + heey) +

(Uue — uqg)(—hyex + heey) +

11
2 hohy 2hh

u(y) = u(x) + (y - x) - Vu(x) +o(hy),

u(z) = u(x) + (z - X) - Vu(x) + o(hy),
whence:

u(y) = u(z) + (y — z) - Vu(x) + o(hy).
From this relation we deduce that there exists constants A, B, C such that:

Up — Ug = (Xp — Xq) - VU(X) + Ah?,

U — Ug = (X — Xq) - VU(X) + Bhf27

Ug — Uy = (& — &) - Vu(x) + Chy,
that is (see Fig. 7):

up — g = (heey + hyey) - Vu(x) + Ahy,

U, — u, = (—he, + hye,) - Vu(x) + Bh?,

Ug — up = hee, - Vu(x) + Chy.
Replacing these values in (9) results in:

(Vu); = Vu(x) + Ry
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€
z
E"q ‘/ey
X, X
b
if -] /
A
Xy X, e,
£ o

Fig. 7. Right parallelepiped mesh: a primal face Fr=X.X;XXq (full lines) and its associated dual side Xy= &,&%, (dashed lines).

with:

(1 A 1B C \,2
R = (f m(hyex + hyey) +§ i (—hye, + heey) +h—zez> hy.

It follows that:

2
hf

1 1

If there exists a positive value o such that:

# < o
min(hy, hy, h;) =

it follows that:

|(Vu)r — Vu)[ = o(hy).

3.3. Approximation of the other terms

In the general case, one supposes that x5, and Ky, are constant approximations of the diffusion coefficient x in the inter-
mediary sub-cell Qg and Qg for example: kg, = K(&,) and kg, = K(&,). If k is continuous in Qr one replaces Ky, and kg, by their
arithmetic mean value or by the value x(&y).

For the other remaining terms, we set:

/ f =PI, / o = |Fyliguy, / 2= IFg (10)
Pp Fy Fy
and:
/ f = Malfa, / 1t = 011 1 9Q gl / g = |01y N 0Qlg,. (11)
1y OIl4noQ allynoQ

If f, 4, g have discontinuities that are honoured by the primal mesh, we will set:

/ f=> 40Py, / au="Y" (oM Fylisug, / g= > |oMsNFlg;.
Iy P, 12 AMynoQ

M4no% FreoQ FreoQ
This amounts to replace f;,44,gq4 in (11) by:

1 1 1
fa—mglﬂml’plfp, id—m > o N Fyliy, 84 = oM, oq] > oM N Fylg;.

FreoQ FreoQ
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3.4. The linear system

Thanks to the approximations (3), (10) and (11) the system (2) reads:

Thanks

with:

n; - xy(Vu

to the approximations (7) we obtain:

n; - x, (Vit), = 3 g (afp(uf —Up) +2 > byl - ua)>,

SSEﬁFf

n; - xy (V) = 3 \Q]T (afq(”q —U)+2 3 bgs(up - ua)>7

Sse()Ff

Bp(Us —Up) +2 37 Olpps(Up — Ug)
Sccdf;

)

Brar(Ug = Us) +2 3 olggrs(Up — ”a)>>

ap = Np - Kphy, A = Nf - KAy,
bsp = nfc CKpVp, b = “ff “ KfqVfgs,
fips = Virp * KipVfeps  Ofars = Vigr * K Vs

Biip = Vi - KWy, Brgr = Vi, - gy

The interior values uy are eliminated by using the equality of normal fluxes:
n; - K (VU)p, = n} K (VU)gy.

Thus we obtain:

1

= | ap|Qpltp + ay|Qplug — 2 (brspl|Qgql — brgs| Q) (U — )
a prqu\ _‘_afq|pr‘ fp 1 <fq | Yp falNfpltq s,ezaff fsp1fq fas I fp a

> g kp(Vu)g, = [Pylfy (& € Q),
FreoPp
n; -k (Vu)p, + [FrlAeup = [Frlgy (& € 09),
2 z;n (Ve — Vo) - 15 (VL) + (Ve — Vi) - qu(Vu)fq) = 2|M4lf; (X4 ¢ 0Q),
fa €01 g

¢ 017 ( vfrp vfup Kfp(vu)fp + (vjtfqr - v}qu) : KfQ(Vu)fq) - znfi . Kd(vu)d = 2|Hducd (xd € 89)7
fa €0ty
)a

+ 104 N 0Q)Jquq = |94 N 0Q|g, (X € 09).

5771

(12)

(13)

(14)

Both replacing (13) in (12) and eliminating the boundary degrees of freedom n - x4(Vu), results in the following linear sys-

tem of N equations in N unknowns uy, ufFy € 0€2), ug(N = number of primal cells + number of boundary primal faces + number
of vertices of the primal mesh):

with:

> Ar(up —ug) + > > Bi(ua —up) = [Pplfy (& €9Q),
FyeoP, FyeoPy SccoF;
A (U — up) — SX(;F Bgs(uq — up) + |Fylisuy = |Fylgy (& € 09),

s EC f

> Culup—ug)+ > > Dpus(ua — up)d = 2|Malfy (Xa ¢ Q),
dyeolly By dlly SseoFs

Z Cfd(up—uq)+ Z Z Dfds(ua —ub)+2\8HdﬂaQ|Adud :2|HdU‘d+2|8Hd08Q|gd (Xd € .Q),
Pryeolly Drycolly SsedFy

1 Y Y
A =3 a0 ragiay
_ 2 pbpstagbgy

By =35 3,00 mrauin
Cpo = 2 Bttt 501y

a1p| Qg 1071 Q| ’

D 4 s =gups) Qg 1+ Oigrs=%iqus) Qo | 4 (Dpsp Q| —Drasl Q) (Bpop )| Qg 1= Brar —Brqu) Qo)
fas =3 [Qppl1Qsql 3 Qs 11Qsq (a1 Qg1 +a74 1 Qpp ) .
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If Qs is a boundary intermediary cell, note that:

1 ap 2 by 2 Brp — Brup _ 4 Ogips — Olgups
3 .

A:_—7 s s Ds—
P73, FT3IQ T3 0 Q)

3.5. Properties of the linear system

Let u be the column-vector made up of the unknowns u,, u{ér € 0Q), ug and let f be the column-vector made up of values
|Pplfp,|Filg{ &r € 0€2), |H4|fy + |ITg N 0L2|gy. The linear system (15) can be rewritten as:
Ku=f.

Note that K is not an M-matrix (because non-diagonal coefficients may be strictly positive), so we cannot hope that K be
monotone in general. On the other hand one can prove the following theorem.

Theorem 1. The matrix K is positive and it is symmetric if x is symmetric. If every face of the primal cells has three or four sides it
is also definite.

Proof. Let w be a test function. We have:
%w‘ -Ku = I(u,w) + B(u,w) = S(w),

where I, B ,S are what we can call respectively an interior energy term:

Iu,w)=-1% ¥ nf "fp(Vu)prp+ Z nf K (V1) p, Wy
P, FfeoP,
_2 _ . _ .
15, 2, (O =) a0+ w5 (Vi) W

a boundary energy term:

B(u,w) =5 Z |Ff|ﬂfufwf+3 > 10014 N 0Q|Agtawq

FreoQ Xg€0Q

and a source term:

Sw) =5 Z|Pp[fpwp +3 Z | alfawq + > IFrlgrwy + > 1014 N 0QIggWa.

F €0Q x,j €0Q

The term I(u,w) can be rewritten as:

Iww)=1 % (7n;.xf,,(Vu)fpwp+n;.nfq(Vu)quq)

Fi¢00
7% > X ((v}rp - v}up) “Kfp (Vu)fp + (V}qr - v}qu) " Krq (Vu)fq)wd
Fr¢0Q xq€0Ff

+1 5 0tk (V) wr —1 ST 0tk (Vo) w
3Ff€(7£2 f & L ! 3Ff€[)!l f fp L

W=

|
win

> (Vi — V) - K (VU) Wy
Ficsa ey, T TP PR

Let us introduce the values wy of the test function w at the interior points & Thanks to the equality of the normal fluxes (14)
we obtain:

I(u,w)=1%" (n} (V) (Wp —wp) =2 35 (vh, — vi,) - xfp(Vu)prd>

Fp Xq€0Ff

+% Z (n} : "fq(Vu)fq(Wq - Wf) -2 Z (vj["qr - ngqu) : Kfq(Vu)fqu>‘

Fy¢0Q Xq€0Ff

Thanks to the identities:
> (= Vi) - p (VU)pWa = = > vy, - s (V) (W — Wa),
Xq€0Fy Ss€0Fy

Z (Vigr = Vigu) * ®1a(VU) g Wa = — Z Vigs kg (Vid) gy (Wp — W),
Xq€0Ff SseoFy
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and thanks to the definition of (Vw)g,, (Vw)g,:

1 1
Vw)p, =5 = | (Wy —wp)n; + 2 Wy — W, ,
( )fD 3 |pr‘ (wr p)Ty S&EFI( b a)Vfsp
1 1
(Vw);, = 370 (Wg =Wy +2 ) (Wy — Wa)vggs | »

Sse(‘)Ff
we obtain finally the following identity:

I(u,w)=-1 > npkp(Vu)pwy +3 2 n; - x (V) Wr
Py FredP, Feoe

_% Z Z <(vj€'rp - vjti(p) : Kfp(vu)fp + (v}qr - v}qu) : "fq(Vu)fq)Wd
Ty ogeor,

= Y 1Qp | (VW) - (V) + 5 [Qpgl (VW) - sy (Vi)
Ff Fr¢0Q
which is a discrete equivalent of the integration par parts:
- / V. (kVu)w + / n' - kVuw = / (xVu) - Vw.
JQ JoQ Q

In [6] this type of relation has been called “discrete duality”, thus giving its name to the class of the discrete duality finite
volume (DDFV) methods. From this relation we deduce that the matrix associated with (15) is positive (because I(u,u) +
B(u,u) > 0) and symmetric (provided that g and i are symmetric).

If f=0 and g=0 we obtain: I(u,u)+ B(u,u)=S(u) = 0 therefore (Vu)g, = (Vu)g, =0 (for all f) and up=uy=0 (for all &,
X4 € 002). For any face Fj, the vectors vy, (Ss € 9Fy) in the one hand and v (Ss € OFy) in the other hand, are all included in a
plane that does not contain ny. From the definition (7) of (Vu);, and (Vu)g, it follows that:

(up — up)ny = (g — Us)ny =0, (16)
and:

Z (up — ua)"fsp = Z (up — ua)qus =0. (17)

Ssei)Ff Ssez‘}Ff

From (16) it follows that ug=u,=ug. If there exists a point & e 0Q such that Ar= 0 then all the degrees of freedom u,,
uf ¢y € 0Q) are zero.
Arrived at this point it remains to prove that ug = 0 for all x4. One can distinguish three cases.
1. If the primal face Fyis triangular (Fr= X.XpX, see Fig. 8), the relation (17) reads:
(U — Ua)Vgsp + (Ue — Up)vgip + (U — Uc)vyip = O,
that is, for example:

(Up — Ua)(visp — vpip) + (Ue — Up) (vstp — vpip) = 0.

(1
1

1
1
t

|

'

|

/ fqr
c o a
T

Fig. 8. Left: intermediary sub-cell Qg = £,XoXpXc&f (full lines), primal face Fy= XXpX, dual sub-faces @, = E&,, Py = Eep, Ppip = EErp (dashed lines) and
normals ny and Vsp, Vip, Vip. Right: intermediary sub-cells Qg = EXXpX & (full lines), primal face Fy=X.XpX., dual sub-faces @p = &&.&s Prg= &g &
Dpys = Eq&r (dashed line) and normals ny and vygr, Vigs, Vige
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vﬂp
Vfu p

Fig. 9. Top: vectors vy, Vyp, Vp in the plane perpendicular to &,& (for a triangular face Fy). Bottom: vectors Vyp, Vsp, Vap, Vsup in the plane perpendicular to &,¢&¢
(for a quadrangular face Fy).

Since the vectors vy, — Vg and vy, — Vi are linearly independent (see Fig. 9 top), we obtain: ug = up = u,. If the primal
mesh is made up of tetrahedra and if there exists a point X, € 02 such that 14 # 0, then all the degrees of freedom uy
are zero.

2. If the primal face Fyis quadrangular (Fr= X.XsXXg, see Fig. 6), the relation (17) reads:

(ub - ua)vfsp + (uc - ub)vftp + (ud - uc)"fup + (ua - ud)vfrp =0
that is:
Ua(Vip — Vpsp) + Up(Vsp — Vi) + Ue(Vitp — Vpup) + Ua(Vip — viip) = 0. (18)

Since &(&, &, &,) are the middle of the sides S/(Ss, S, S,,) of the primal face F;, elementary geometrical considerations give:

1 1
—Vip T Vip + 5 (nfab + nﬂw) + 2 ("pba + Vpcb) =0,

2
1 1

= Viip + Viup 5 (e + Myea) + 5 (Vpe + Vpac) = 0,
1 1

= Viup + Vip + 5 (e + Myga) + 5 (Vpde + Vpaa) = 0,
1 1

= Vgip + Vsp + 5 (Mga + Myab) + 5 (Vpad + Vpha) = 0.

Adding the first and third (or second and fourth) equations and noting that:
Ny + Ngye + Nyeg + Ny + Vppa + Vpeb + Vpde + Vpad = 0,

provides:
—Vpp + Vi — Viup + Viip = 0.

By taking into account this relation, (18) reads:
(Ue — Ua)(Vsp — Vyip) + (Up — Ua)(Visp — viip) = 0.

Since the vectors Vs, — Vip and Vg, — Vi are linearly independent (see Fig. 9 bottom), we obtain: u, = uc and up = ug. If the
primal mesh is made up of hexahedra (or mixed tetrahedra and hexahedra) and if there exists two points X, X, € 02 that
are the vertices of one side of a boundary quadrangular primal face, such that i. # 0, /4 # 0, then all the degrees of free-
dom uy are zero.

3. If the primal face Fy has more than four sides we cannot conclude: the matrix K is only positive semidefinite.

This ends the proof. It is worth remarking that the matrix K coincides with the matrix associated with the method
proposed in [8] (although the dual meshes are different) as soon as:
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1. the indirect dual mesh is replaced by the direct dual mesh,
2. discontinuous tensors x are not involved.

3.6. Dealing with the Dirichlet boundary condition

In order to keep the presentation simpler, the Dirichlet or mixed Dirichlet-Robin boundary conditions have not been con-
sidered so far. Assume that 9Q = I'r UTp (where I, I'p are disjoint open subsets of 0Q) and that:

kVu-n+iu=g on Ik,
u=v on Ibp.

The Dirichlet boundary condition: u = v on T', may be numerically embodied in the Robin boundary condition, provided that
g=/vonTpand that 4 is chosen large enough. An other way (that we have chosen) consists in imposing uy= yrand ug4 = v for
all &,x4 € T'q when iterative methods are used for solving the linear system (15).

Note that we will suppose that the primal mesh honours the boundary I'y N I'p when mixed Dirichlet-Robin boundary
conditions have to be handled.

3.7. Particular cases

Let us define (see Fig. 8 for example):

—_

. 0y (0gy) the angle between ny and the dual side Xg, = &£, (X5 = &g,
2. Nsips (Mggrs) the angle between v, and vgg, (vigr and vyg),
3. {fp ({fgs) the angle between ny and g, (Vigs).

Suppose that Fyis a planar face and & € Fr. The volume of the intermediary sub-cells Qg and Qg are given by:

1 1
where:
hg, = cos 0| Zp|,  hyg = €OS O | 2

are the distances between the point &, (&;) and the face Fy.
Furthermore suppose that the diffusion coefficient x is continuous and isotropic (that is k = kI, k being a strictly positive
continuous function) and denote:

1
Ky = 5 (15 + IK5q),
we obtain:

2
ap = iy = Kr[Fr|",  Otps = Ky COS Ny Prip || Prspl,  Uggrs = K5 COS Ny | Ppyr || P

and:

bip = Brp = Ky O Frl.  brgs = Bros = K OpaslFy,
with:

Ofp = COS Lp| Drpl,  Tpgs = COS L P

So the coefficients of the linear system (15) are, for an interior intermediary cell Qy:

Fy|
A = Ky
S T Ry
+0,
By = 21y J
fs f hyp+hyg 2

_ fip +Ofqr —Ofup — Tfqu
Cra = 21 ==

[Pgpl
Dfds = 4;(7# ( hf,: (COS ’/’frps|¢f”l" — €0s nfups|¢ﬁlp‘) +

)

[Pres|
hyg

(COS rlfqrs‘éfqr‘ — €0s I,Ifqus‘@fqu‘)

_ _ Ofip—Ofup_ ___Ofar—Ofqu
(hfq Tsfp hfpo-qu)(hfp(hfpqu) hfq<hfp+hfq))) ’
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and, for a boundary intermediary cell Qg

Il
A= Kf hy 2
T
st 2Kf —h[:,

Ofrp—0}f
Cfd = 2Kf fVthP fup ,
|®,

Dyas = 41y 522

(cos ’/’frps|q)frp‘ — €0s nfups|q)ﬁlp‘)'

Suppose that 0p, = 0, = 0f (0r= angle between nfand Xr= &,&;) and hy= hy, + hg; = cosOd 2. We obtain:

|Fy|
Ap = K50

Ty +07gs
st — 2Kf fphf o ,

Ofip+0fqr—Ofup—0,
Cfdzsz frp fqrhfﬁw /-Ju7

|Pgsp| |Prys|
Dde = 4Kfﬁ |Fif\ (|sz:\ (cos ’7frps|®ffp‘ —Cos 77fups|(pfup|) + \zjﬁ (cos nfqrs‘(pﬂﬂ — Cos nfqus‘(pfqu‘)

Tfp=up __ Tfar =T
—(1Zglog — |pr|6qu)< \zn;uzf:f - \Zq;uzf;\"))'

Finally, if 0y = 0, that is if the primal and dual meshes are perpendicular (this the case for Delaunay-Voronoi meshes or admis-
sible meshes as defined in [45]), then, for all Sy, {zp = {fgs = 0 (SO 0gp = 05 = 0), and we get:

|Fy|
Af = Kf#’
By =Cy=0
|Ppl | Prys|
Dde = 4Kf\l}7 (‘fo:‘ (COS ’7frps|(pffp‘ — Cos nfupsl(pfllp') + \zfﬁ (COS nfqrs‘(pfqr| — C0s nfqus‘(pfqu‘)) .

In this case the linear system (15) boils down to two independent systems, the first (resp. second) one having as unknowns
the values of u at the primal (resp. dual) points.
For a cube mesh whose side length is h, we have:

1 1
Af = th, st = Cfd = 0, Dfds = Zth or Dfds = —Zth.

In this last case the system boils down to three independent linear systems, the first one having as unknowns the values of u
at the primal points (see Fig. 10, left) and the last two ones having as unknowns the values of u at the dual points that are not
linked with a side (black circles on the one hand and white circles on the other hand: see Fig. 10, right).

3.8. Link with the diamond-type schemes

Let N, be the set of primal cells whose X, is a vertex. By substituting to the third and fourth equation of (15) any formula
which gives an approximation of the (dual) values uy from the (primal) values up, for example:

U >pyen, [Poltp
e T
ZPpeNd‘PIJ‘

or:

-1
D _pyen,|EpXal Up
e —"
ZPpgNd ‘épx(”

[¢; ']

Fig. 10. Left: primal degrees of freedom. Right: dual degrees of freedom.
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we obtain diamond-type schemes whose associated matrices are not symmetric (see [46-51] in two dimensions). Note that
non-linear diamond-type methods have been recently devised in order to obtain monotone matrices (see [52-55]).

4. Numerical experiments

Given a scalar function u and its gradient v = Vu, let us define the discrete L? (resp. L)-norm by:
1

1 2
llull, = (2 (Z Pyluy + IUd|u§)> (resp. [|ull., = max(up, Uq))
P d k

and:

N

Vil = (Z |Qs|vy 'Vf> (resp. |[Vll., = max((vy - ¥y)?)).
f

Let N be the number of cells and define by h the following characteristic length associated with the mesh of the domain Q:

- (3)

The relative error between the exact solution u, (resp. gradient of the solution v, = Vu,) and the approximated one u; (resp.
v, = (Vu),) are defined by:

eg _ [[un — Uell, o — [[up — Uel| . (eg _ [[Vh = Vell o — |V —Ve|‘x>
b 9
[[ue] | = [[tte| | [[Vell, = [[Vell .

The order of the method is given by:

log(e’") — log(eM)

order = log2

The large linear systems that arise from the implementation of the method are diagonally preconditioned before being
solved by the conjugate gradient method when they are symmetric and by the BICGSTAB method when they are not (see
for example [56]). The stopping criterion for these methods is the relative decrease in the norm of the residual by a factor
of 10715, The initial guess is always the unit vector.

In what follows  is the unit cube [0,1]3. We have tested six groups of meshes of Q.

1. Cube meshes from the coarsest (53 cells) to the finest (803 cells).

2. Tetrahedron meshes from the coarsest (6 x 5> cells) to the finest (6 x 80> cells), defined by dividing each cube of the
previous meshes into six tetrahedra.

3. Randomly distorted hexahedron meshes from the coarsest (5> cells) to the finest (80> cells) which are made up by trans-
forming the meshes of the first group by the maping:

X =x+ Chry,
Y =y + Chry, (19)
7 =z + Chrs,

where C= 0.4, h is the length of the cube edges and ry, 1, r3 are random numbers chosen between —1 and 1.
4. Randomly distorted tetrahedron meshes from the coarsest (6 x 5° cells) to the finest (6 x 80° cells) which are made up by
transforming the meshes of the second group by the maping (19) with C=0.2.
5. Continuously distorted hexahedron meshes from the coarsest (5> cells) to the finest (80> cells) which are made up by
transforming the meshes of the first group by the maping (see [32]):
X =x+0.1sin(27nx) sin(2my) sin(27nz),
Y =y + 0.1sin(2nx) sin(27y) sin(2nz),
Z =z +0.1sin(27x) sin(2my) sin(2nz).

6. Distorted hexahedron meshes of Kershaw's type, from the coarsest (10> cells, see Fig. 11) to the finest (80> cells).
For all these meshes, note that: h~! = 5¢, 10z, 200, 40¢;, 800, with o = 65 (tetrahedra) or « = 1 (hexahedra).

4.1. First example: x is a scalar tensor
Suppose that k is the unit matrix and that f is such that u = sin(zx)sin(7y)sin(nz) is the solution to (1) with a Dirichlet

boundary condition. The relative errors between the computed solution (resp. gradient of the solution) and the exact solu-
tion (resp. gradient of the solution) are given in Table 1 (resp. Table 2).
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Fig. 11. The coarse distorted hexahedron mesh of the unit cube (10> cells).
Table 1
First example. Relative errors for u (o = 6%: tetrahedra, o= 1: hexahedra).
h! Cubes Order Regular tetrahedra Order Randomly hexahedra Order
el el el
5a 1.03 x 107" 5.03 x 1072 1.26 x 10"
100 2.44 x 1072 2.08 117 x 1072 2.10 320 x 1072 1.97
200 6.02 x 1073 2.02 3.71 x 1073 1.65 8.04 x 1073 1.99
400 1.50 x 103 2.00 8.26 x 1074 2.16 2.04 x 1073 1.98
800 3.74 x 104 2.00 1.91 x 1074 2.11 518 x 107 1.98
et el el
5a 123 x 107! 5.77 x 1072 217 x 107!
100 3.35 x 1072 1.87 1.54 x 1072 1.95 5.87 x 1072 1.89
200 8.26 x 103 2.02 6.72 x 1073 1.19 1.52 x 1072 1.94
400 2.06 x 103 2.00 2.05 x 103 1.71 392 x 103 1.95
800 514 x10°* 2.00 523 x10°* 1.97 1.09 x 103 1.85
h! Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
el el el
5a 5.36 x 1072 1.23 x 10!
100 122 x 1072 2.13 3.13 %1072 1.97 2.56 x 1072
200 3.88 x 1073 1.66 7.99 x 1073 1.97 6.66 x 103 1.99
400 8.74 x 104 2.15 2.01x 103 1.99 1.62 x 1073 2.00
800 2.03 x 1074 2.11 5.03 x 107 2.00 4.05 x 104 2.00
e, el el
5a 7.88 x 1072 133 x 107"
100 1.71 x 1072 2.20 3.56 x 102 1.91 3.09 x 102
200 6.69 x 1073 1.35 9.21 x 1073 1.93 7.70 x 1073 2.00
400 213 x 1073 1.65 2.32 %103 2.00 1.92 x 1073 2.00
800 5.61x10* 1.92 5.80 x 107 2.00 480 % 1074 2.00
4.2. Second example: k is a full anisotropic symmetric tensor
Suppose that k = k(X) is the symmetric positive definite matrix defined by:
cosmx —sinmx 0 10 0 cosmx sinmx O
k= | sinmtx cosmx O 0 ¢ 0 —sinmx cosmx O (20)
0 0 1 0 0 n(1+x+y+2 0 0 1

and let f be the function such that u = sin(7x)sin(xy)sin(nz) is the solution to (1) with a Dirichlet boundary condition. We
have chosen ¢=10"" and # = 10. This test is a 3D extension of a plasma physics benchmark coming from [57]. The relative
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Table 2 )

First example. Relative errors for Vu (o = 63: tetrahedra, o = 1: hexahedra).

=" Cubes Order Regular tetrahedra Order Randomly hexahedra Order
el el el

5u 5.71 x 1072 2.26 x 107! 123 x 107!

100 1.38 x 1072 2.05 1.11 x 107! 1.02 5.18 x 1072 1.25

200 342 x 1073 2.01 5.18 x 1072 1.11 2.48 x 1072 1.06

400 8.53 x 1074 2.00 2.70 x 1072 0.94 1.23 x 1072 1.02

80u 213 x107* 2.00 138 x 1072 0.97 6.16 x 103 0.99
et el el

50 6.24 x 1072 2.95 x 107! 236 x 107!

100 1.66 x 1072 1.91 1.58 x 107! 0.91 1.60 x 107! 0.56

200 412 x 1073 2.01 7.38 x 1072 1.09 7.51 x 1072 1.09

400 1.03 x 103 2.00 4.05x 1072 0.87 497 x 1072 0.59

80u 2.57 x 1074 2.00 2.04 x 1072 0.99 3.64 x 1072 0.45

=" Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
el el el

50 2.28 x 107! 1.12 x 107!

100 1.17 x 107! 0.96 3.17 x 1072 1.82 2.27 x 1072

200 5.49 x 1072 1.09 8.25 x 1073 1.94 5.85 x 1073 1.92

400 2.87 x 1072 0.94 2.09 x 103 1.98 1.48 x 1073 1.98

80u 1.46 x 1072 0.97 524 x 107 1.99 3.71 x 1074 1.99
et el el

50 3.40 x 107! 133 x 107!

100 2.47 x 107! 0.46 435 x 1072 1.60 464 x 102

200, 123 x 10" 1.00 1.37 x 1072 1.66 1.60 x 102 1.53

400 8.35 x 1072 0.56 1.95 x 1073 1.79 5.63 x 107> 1.50

80u 4.64 x 1072 0.85 1.04 x 1073 1.93 2.06 x 1073 1.45

Table 3

Second example. Relative errors for u (o = 6%: tetrahedra, o = 1: hexahedra).

h! Cubes Order Regular tetrahedra Order Randomly hexahedra Order
el el el

50 1.03 x 107! 6.66 x 1072 1.48 x 107!

100 243 x 1072 2.08 1.62 x 1072 2.03 425 x 1072 1.80

200 5.99 x 102 2.02 4.85 x 1073 1.74 1.01 x 102 2.07

400 1.49 x 1073 2.00 121 x 1073 1.99 2.60 x 1073 1.96

80u 3.73 x107* 2.00 2.82 x 1074 2.10 6.64 x 1074 1.97
&, e, &,

50 123 x 107! 7.01 x 1072 2.61 x 107!

100 331 x 1072 1.91 1.89 x 1072 1.89 7.64 x 1072 1.77

200 8.15x 1073 2.02 7.71 x 1073 1.29 2.26 x 1072 1.76

400 2.03 x 1073 2.00 2.90 x 103 141 5.49 x 1073 2.04

80 5.08 x 10~* 2.00 7.83 x 107* 1.89 1.74 x 1073 1.65

h! Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
el el el

50 7.63 x 1072 1.47 x 107!

100 1.94 x 1072 1.97 3.56 x 1072 2.04 3.01 x 102

200 5.63 x 1073 1.78 8.90 x 103 2.00 7.36 x 1073 2.03

400 138 x 1073 2.02 222 x1073 2.00 1.78 x 1073 2.04

80u 332x107* 2.06 5.57 x 107 2.00 4.40 x 107* 2.02
el el el

50 132 x 107! 1.96 x 107!

100 2.75 x 1072 2.26 533 x 1072 1.88 4.68 x 1072

200 1.04 x 1072 1.40 1.40 x 1072 1.92 1.17 x 1072 2.03

400 2.88 x 1073 1.85 3.48 x 103 2.01 3.52x 1073 2.04

80 7.99 x 10~* 1.85 8.70 x 1074 2.00 9.29 x 1074 2.02

errors between the computed solution (resp. gradient of the solution) and the exact solution (resp. gradient of the solution)
are given in Table 3 (resp. Table 4).

4.3. Third example: k is an antisymmetric tensor

Suppose that k = k(x) is the antisymmetric positive definite matrix defined by:
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Table 4 )
Second example. Relative errors for Vu (« = 63: tetrahedra, o = 1: hexahedra).
=" Cubes Order Regular tetrahedra Order Randomly hexahedra Order
el el el
5u 5.81 x 1072 2.59 x 107! 1.96 x 107!
100 1.41 x 1072 2.05 1.26 x 107! 1.04 1.07 x 107! 0.89
200 349 x 1073 2.00 5.97 x 1072 1.08 4.60 x 1072 1.20
400 8.71 x 1074 2.00 3.16 x 1072 0.92 224 x 1072 1.04
80u 218 x107* 2.00 1.57 x 1072 1.00 112 x 1072 1.00
et el el
50 7.71 x 1072 3.78 x 107! 6.56 x 10!
100 2.16 x 1072 1.83 2.09 x 107! 0.85 412 x 107! 0.67
200 5.63 x 1073 1.94 1.08 x 107! 0.95 2.32x 107! 0.82
400 1.46 x 103 1.94 7.49 x 1072 0.53 1.15 x 107! 1.00
80u 3.77 x 107* 1.95 4.07 x 1072 0.88 7.54 x 1072 0.61
=" Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
el el el
50 2.71 x 107! 1.84 x 107!
100 1.40 x 107! 0.95 5.46 x 1072 1.75 7.15 x 1072
200 6.69 x 1072 1.07 1.47 x 1072 1.89 2.51 x 1072 1.51
400 3.52 x 1072 0.93 3.76 x 103 1.96 744 x 1073 1.76
80u 1.78 x 1072 0.98 947 x 1074 1.99 1.97 x 1073 1.91
et el el
50 461 x 107! 4.05 x 107!
100 3.47 x 107! 0.41 1.63 x 107! 1.31 2.32x1072
200 2.04 x 107! 0.77 551 x 1072 1.57 1.15x 1073 1.01
400 120 x 107! 0.76 1.68 x 1072 1.72 438 x107* 1.40
80a 5.95 x 1072 1.01 5.51 x 1073 1.61 1.45 x 1074 1.60
Table 5
Third example. Relative errors for u (o = 63: tetrahedra, « = 1: hexahedra).
h! Cubes Order Regular tetrahedra Order Randomly hexahedra Order
e e e
50 1.03 x 107! 5.04 x 1072 127 x 107!
100 2.44 x 1072 2.08 117 x 102 2.10 321 x 1072 1.98
200 6.02 x 1073 2.02 3.73 x 1073 1.65 8.03 x 1073 1.99
400 1.50 x 1073 2.00 8.34 x 107* 2.16 2.04 x 1073 1.97
80 3.74 x 107* 2.00 1.93 x 107* 2.11 5.19 x 10~* 1.98
e, & &
50 1.23 x 107! 5.95 x 1072 2.00 x 107!
10a 3.35 x 1072 1.87 1.54 x 1072 1.95 5.88 x 1072 1.77
200 8.26 x 1073 2.02 6.73 x 1072 1.19 1.46 x 1072 2.01
400 2.06 x 1073 2.00 2.05x 1073 1.71 3.87 x 1073 1.91
80 5.14 x 1074 2.00 524 x 1074 1.97 1.09 x 1073 1.83
h! Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
e e e
50 5.46 x 1072 123 x10°!
100 1.22 x 1072 2.15 3.13 x 1072 1.97 2,61 x 1072
200 3.92 x 1073 1.64 7.98 x 107> 1.97 6.56 x 103 1.99
400 8.86 x 10 2.14 2.01 x 1073 1.99 1.64 x 1073 2.00
80 2.04x 1074 2.11 5.03 x 1074 2.00 4.10x 10°* 2.00
el & &
5a 7.77 x 1072 1.35x 107!
10a 1.69 x 102 2.20 3.58 x 102 1.92 3.15x 1072
200 6.82 x 1073 1.30 9.26 x 103 1.95 7.86 x 1072 2.00
400 214 x 1073 1.67 231x 1073 2.00 1.96 x 1073 2.00
80u 5.61 x 107 1.94 5.78 x 107 2.00 490 x 10°* 2.00
1 T+xy 1+4+xz
k=| -1-xy 1 1+yz
-1-xz -1-yz 1
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Table 6 )

Third example. Relative errors for Vu (o = 63: tetrahedra, o = 1: hexahedra).

=" Cubes Order Regular tetrahedra Order Randomly hexahedra Order
el el el

5a 5.71 x 102 2.26 x 107! 1.25 x 107"

100 1.38 x 1072 2.05 1.11 x 107! 1.02 5.22 x 1072 1.26

200 342 x 1073 2.01 5.18 x 1072 1.11 2.50 x 1072 1.06

400 8.53 x 107* 2.00 2.70 x 1072 0.94 1.23 x 1072 1.02

80u 213 x107* 2.00 138 x 1072 0.97 6.19 x 1073 0.99
et el el

50 6.30 x 1072 2.97 x 107! 2.54 x 107!

100 1.70 x 1072 1.89 1.57 x 107! 0.92 1.65 x 107! 0.62

200 423 x 1073 2.00 7.43 x 1072 1.08 7.47 x 1072 1.14

400 1.06 x 103 2.00 4.06 x 102 0.87 491 x 1072 0.60

80u 2.65 x 107 2.00 2.04 x 1072 0.99 3.67 x 1072 0.42

h! Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
el el el

5q 228 x 107! 113 x 10"

10a 117 x 107! 0.96 3.18 x 1072 1.82 2.32x 1072

200 5.50 x 1072 1.08 8.30 x 1072 1.94 6.03 x 1073 1.94

400 2.87 x 1072 0.94 2.10 x 1073 1.98 1.56 x 1073 1.95

80 1.46 x 1072 0.97 527 x 1074 1.99 4.07 x 10°* 1.94
£ & &

5q 3.40 x 107! 1.37 x 107!

10a 248 x 107! 0.45 467 x 1072 1.55 5.22 x 1072

200 1.21 x 107! 1.03 1.53 x 1072 1.61 1.88 x 1072 1.47

400 8.28 x 1072 0.55 428 x 1073 1.83 723 x 1073 1.38

80u 4.65 x 1072 0.83 111 x 1073 1.95 2.57 x 1073 1.49

Table 7

Fourth example. Relative errors for u (o = 63: tetrahedra, « = 1: hexahedra).

h! Cubes Order Regular tetrahedra Order Randomly hexahedra Order
e e e

10a 2.83x10°* 2.88 x 1074 7.95 x 1074

200 7.44 x 107° 1.93 111 x 1074 1.37 2.36x 1074 1.75

400 1.89 x 107> 1.98 2.62 x 107> 2.08 6.25 x 107> 1.91

80u 4.75 x 1076 1.99 6.09 x 10°° 2.10 1.67 x 107> 1.91
et el el

100 4.64 x 1074 5.57 x 10 153 x 1073

200 134 x 1074 1.79 1.53 x 1074 1.85 5.63 x 10~* 1.45

400 3.75 x107° 1.84 5.66 x 107> 1.44 1.65 x 1074 1.77

80u 1.00 x 107° 1.90 1.61 x 107° 1.81 531 x 107° 1.64

h! Randomly tetrahedra Order Continuously distorted hexahedra Order Distorted hexahedra Order
e e e

100 334 x107* 6.69 x 10~* 142 x 1073

200 1.26 x 1074 1.40 1.88 x 1074 1.83 3.69 x 1074 1.95

400 3.08 x 10~° 2.03 4.88 x 10~ 1.95 9.34 x 107> 1.98

800 7.21 x10°° 2.09 123 x 107° 1.98 2.35x 107> 1.99
el el el

100 7.57 x 107 1.40 x 1073 2.82x 1073

200 231x10°* 1.71 4.88 x 1074 1.52 9.92 x 104 1.51

400 7.80 x 10~° 1.56 1.43 x 107* 1.77 3.14x 107 1.66

80u 2.14 x 107° 1.87 3.85 x 10> 1.90 9.18 x 10> 1.77

and let f be the function such that u = sin(7x)sin(7 y)sin(nz) is the solution to (1) with a Dirichlet boundary condition. This
test is a 3D extension of a benchmark coming from [3]. The relative errors between the computed solution (resp. gradient of
the solution) and the exact solution (resp. gradient of the solution) are given in Table 5 (resp. Table 6).

4.4. Fourth example: k is discontinuous

Suppose that x = x(x) is the positive definite matrix defined by:
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10
k=010 if x<0.5
0 1
and:
210
k=|1 2 0 if x> 0.5.
0 1

Let f be the function such that:

u=(x—05)(2siny+cosy)+siny+z if x<0.5,
u=e%siny+z if x> 0.5,

is the solution to (1). If x= 0.5 and n = (1,0,0), note that («Vu) - n = 2siny + cosy. This test is a 3D extension of a benchmark
inspired from [58]. Note that all the meshes we have tested honour the discontinuity plane x = 0.5. The relative errors be-
tween the computed solution and the exact solution are given in Table 7.

109 4 | | s 109 4 | | s
10714 E 10714 é E
1 * i 1 i
] O [ 1 [
1072 * L 1072 4 55 L
E O = E =
] £ ] é £
] " i ] i
1073*5 O E 1073*5 é E
E 0O * F E F
1074 5 * Eoot07t 3
1 y [ 1 y [
1070 e 1070 e
1073 1072 107" 109 1073 1072 107" 109
(a) Cube meshes (b) Regular tetrahedron meshes
10 el e
1071 E
1 O [
-2
1077 4 * E
E O E
1 * [
1073 4 © E
E * E
b O F
1 * [
1074 5 E
] AZ t
1 ] [
1073 T
1073 1072 1071 100

(c) Distorted hexahedron meshes

Fig. 12. First example. Errors in the L?>-norm for u with the old (x) and new (O) methods.
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4.5. Discussion

The previous numerical experiments call several remarks. For all the benchmarks and for all the meshes considered, we
have observed a second-order (resp. nearly second-order) convergence rate in the L (resp. L°) norm for u. Regarding Vu, we
have observed, for all the benchmarks:

- a second-order (resp. nearly second order) convergence rate in the L? (resp. L) norm for the cube mesh,

- a convergence rate between 1.5 and 2 in the L? (resp. L°) norm for all the hexahedron meshes except the randomly mesh,

- afirst-order (resp. nearly first-order) convergence rate in the L? (resp. L) norm for the randomly hexahedron mesh and
for all the tetrahedron meshes.

Comparisons between the old method described in [10] and the new proposed method have been carried out for the cube,
regular tetrahedron and distorted hexahedron meshes: see Figs. 12-14. For hexahedron meshes the old method is slightly
more precise but it fails to converge when continuously distorted and randomly meshes are used or when highly anisotropic
diffusion tensors have to be dealt with (this is the reason for which some values “v”, standing for the numerical result with
the old method, are lacking on Fig. 13).

The new method is more robust since it converges for all the type of meshes we have experimented so far. However han-
dling highly anisotropic diffusion tensors of type (20) such that & < 105 can deteriorate the convergence properties when
distorted meshes are involved, as it has been already remarked for the 2D case: see [59]. Using right parallelepiped meshes
seems to remain necessary for such difficult issues: note that an anisotropic diffusion tensor of type (20) with & < 10~!% has
been handled successfully when using a cube mesh.

100 - Lol L 100 - Lol L
10714 E 10714 * E
E E E @) E
4 O * L 4 * L
1072 4 Eo 10724 © L
E X E E E
] O : ] 0 :
] * i ] i
1073 5 © E 1073 4 @) E
E * F E F
] O F ] O b
1074 5 * Eo10t 3
1 ; [ 1 ; [
107° e e 1075 ey ‘
1073 1072 107" 100 1073 1072 107" 100
(a) Cube meshes (b) Regular tetrahedron meshes
U BT B |
107" E
-2
1072 4 Q L
10’37E @ E
] O g
107 5 3
] AQ .
1 ] [
1075 — e ————y -
1073 1072 1071 100

(¢) Distorted hexahedron meshes

Fig. 13. Second example. Errors in the L>-norm for u with the old () and new (O) methods.
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] . i ] i
1073 4 © 10703 & 3
E O * F E E
4 * I 4 é I
0 1 j E 103 j 3
] 2 E ] 2 E
1 y [ 1 y [
1075 ————— 1075 — ‘
1073 1072 107" 10° 1073 1072 107" 100
(a) Cube meshes (b) Regular tetrahedron meshes
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10715 3
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-2
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10’4—; E
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(¢) Distorted hexahedron meshes

Fig. 14. Third example. Errors in the L>-norm for u with the old () and new (O) methods.

5. Concluding remarks

The numerical results presented in the paper demonstrate that the “new” proposed method is quite both robust and accu-
rate when applied to general diffusion equations on general meshes. Comparisons with the “old” method proposed in [10]
show a very clear improvement regarding the robustness. Extensive numerical comparisons between these methods and
other ones (mixed hybrid finite element, control-volume multi-point-flux approximation, mimetic finite differences, discon-
tinuous Galerkin,...), like those which have been carried out in the 2D case (see [25]), would be welcome. They will be the
subject of future works.
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